Macroscale behavior of random lower triangular matrices
نویسندگان
چکیده
We analyze the macroscale behavior of random lower (and therefore upper) triangular matrices with entries drawn i.i.d. from a distribution nonzero mean and finite variance. show that such matrix behaves like probabilistic version Riemann sum in limit Volterra operator. Specifically, we certain SOT-like WOT-like modes convergence for to scaled close brief discussion moments.
منابع مشابه
Condition Numbers of Random Triangular Matrices
Let L n be a lower triangular matrix of dimension n each of whose nonzero entries is an independent N(0; 1) variable, i.e., a random normal variable of mean 0 and variance 1. It is shown that n , the 2-norm condition number of L n , satisses n p n ! 2 almost surely as n ! 1. This exponential growth of n with n is in striking contrast to the linear growth of the condition numbers of random dense...
متن کاملStability of block-triangular stationary random matrices
The objective of this note is to prove, under certain technical conditions, that the top-Lyapunov exponent of a strictly stationary random sequence of block-triangular matrices is equal to the maximum of the top-Lyapunov exponents of its diagonal blocks. This study is partially motivated by a basic technical problem in the identification of GARCH processes. A recent extension of the above inher...
متن کاملTwo Random Walks on Upper Triangular Matrices
We study two random walks on a group of upper triangular matrices. In each case, we give upper bound on the mixing time by using a stopping time technique.
متن کاملTRIANGULAR FUZZY MATRICES
In this paper, some elementary operations on triangular fuzzynumbers (TFNs) are defined. We also define some operations on triangularfuzzy matrices (TFMs) such as trace and triangular fuzzy determinant(TFD). Using elementary operations, some important properties of TFMs arepresented. The concept of adjoints on TFM is discussed and some of theirproperties are. Some special types of TFMs (e.g. pu...
متن کاملRandom walk on upper triangular matrices mixes rapidly
We present an upper bound O(n2) for the mixing time of a simple random walk on upper triangular matrices. We show that this bound is sharp up to a constant, and find tight bounds on the eigenvalue gap. We conclude by applying our results to indicate that the asymmetric exclusion process on a circle indeed mixes more rapidly than the corresponding symmetric process.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis and Mathematical Physics
سال: 2021
ISSN: ['1664-2368', '1664-235X']
DOI: https://doi.org/10.1007/s13324-021-00621-1